Analysis of Methanol in Water Sample by Gas Chromatography
Keywords:
MTBE, Calibration, Drain, FID etc.Abstract
Methanol typically contaminates the polymer-grade propylene product. The sources of methanol are direct injection into the cold box and cold fractionation areas to remove hydrates and feed stocks containing either methanol or MTBE. A small amount of methanol is produced during the cracking of an impurity-free feedstock in Naphtha cracker and is generally insufficient to cause propylene product purity problems. About 50 to 60% of methanol passes through the furnace unreacted with the balance methanol forming carbon monoxide and hydrogen.
CH3OH ? CO + 2H2
Methanol from the furnace enters the process water steam in the quench tower or charge gas condensate of Naphtha cracking units. The majority of methanol in the process water is vaporized in the dilution steam system and recycled to the furnace. Methanol accumulation can be monitored in the process water as early detection of potential propylene-methanol product purity problems.
Methanol in propylene gas is analyzed by test method MTM 151014E. In this test method, a gas sample is injected into the Gas Chromatography by a gas sampling valve and passes through a capillary column to separate the components and FID is used for detection. The concentration of components is calculated by the external standard method. NO test method is available for analysis of methanol contents in water samples.
In the present work, a new method has been developed for the analysis of methanol in water samples by Gas Chromatography.
References
2 .Goodger, E. M.; Hydrocarbon Fuels: Production, Properties and Performance of Liquids and Gases; Wiley: New York, USA, 1975. [ Links ]
3 .http://legislacao.anp.gov.br/?path=legislacao-anp/resol-anp/2013/outubro&item=ranp-40-2013, accessed in December 2019. [ Links ]
4. https://www.normasbrasil.com.br/norma/portaria-75-2015_ 281775.html, accessed in December 2019. [ Links ]
5 .Agarwal, A. K.; Prog. Energy Combust. Sci. 2007, 33, 233. [ Links ]
6 .Oumer, A. N.; Hasan, M. M.; Baheta, A. T.; Mamat, R.; Abdullah, A. A.; Renewable Sustainable Energy Rev. 2018, 88, 82. [ Links ]
7 .Naik, S. N.; Goud, V. V.; Rout, P. K.; Dalai, A. K.; Renewable Sustainable Energy Rev. 2010, 14, 578. [ Links ]
8 .Nastari, P.; Eletrificação com Biocombustíveis; available at http://www.anp.gov.br/images/Palestras/Matriz-Veicular-2019/08-Plinio_Nastari-Datagro.pdf, accessed in December 2019. [ Links ]
9 .http://legislacao.anp.gov.br/?path=legislacao-anp/resol-anp/2011/fevereiro&item=ranp-8-2011, accessed in December 2019. [ Links ]
10. http://legislacao.anp.gov.br/?path=legislacao-anp/resol-anp/2015/abril&item=ranp-19-2015, accessed in December 2019. [ Links ]
11 .Kruse, J. A.; Intensive Care Med. 1992, 18, 391. [ Links ]
12 Jahan, K.; Mahmood, D.; Fahim, M.; J. Pharm. BioAllied Sci. 2015, 7, 60. [ Links ]
13 .Martins, G. B. C.; Montenegro, M. A.; Suarez, P. A. Z.; Quim. Nova 2015, 38, 280. [ Links ]
14 .ABNT NBR 16041: Fuel Ethanol - Determination of Methanol and Ethanol Contents by Gas Chromatography; ABNT: Campos Elíseos, SP, Brazil, 2015. [ Links ]
15 .ABNT NBR 13992: Automotive Gasoline - Determination of Anhydrous Ethanol Fuel Content; ABNT: Campos Elíseos, SP, Brazil, 2015. [ Links ]
16 .Abreu, R. E. L.; Paz, J. E. M.; Silva, A. C.; Pontes, M. J. C.; Lemos, S. G.; Fuel 2015, 156, 20. [ Links ]
17 .Pereira, P. F.; Sousa, R. M. F.; Munoz, R. A. A.; Richter, E. M.; Fuel 2013, 103, 725. [ Links ]
18 .Silva, A. C.; Paz, J. E. M.; Pontes, L. F. B. L.; Lemos, S. G.; Pontes, M. J. C.; Electrochim. Acta 2013, 111, 160. [ Links ]
19 .Carneiro, H. S. P.; Medeiros, A. R. B.; Oliveira, F. C. C.; Aguiar, G. H. M.; Rubim, J. C.; Suarez, P. A. Z.; Energy Fuels 2008, 22, 2767. [ Links ]
20 .Silva, A. C.; Pontes, L. F. B. L.; Pimentel, M. F.; Pontes, M. J. C.; Talanta 2012, 93, 129. [ Links ]
21. Fernandes, H. L.; Raimundo Jr., I. M.; Pasquini, C.; Rohwedder, J. J. R.; Talanta 2008, 75, 804. [ Links ]
22 .Corsetti, S.; Zehentbauer, F. M.; McGloin, D.; Kiefer, J.; Fuel 2015, 141, 136. [ Links ]
23. Lutz, O. M. D.; Bonn, G. K.; Rode, B. M.; Huck, C. W.; Anal. Chim. Acta 2014, 826, 61. [ Links ]
24 .Mabood, F.; Gilani, S. A.; Albroumi, M.; Alameri, S.; Al Nabhani, M. M. O.; Jabeen, F.; Hussain, J.; Al-Harrasi, A.; Boque, R.; Farooq, S.; Hamaed, A. M.; Naureen, Z.; Khan, A.; Hussain, Z.; Fuel 2017, 197, 388. [ Links ]
25 .Milanez, K. D. T. M.; Silva, A. C.; Paz, J. E. M.; Medeiros, E. P.; Pontes, M. J. C.; Microchem. J. 2016, 124, 121. [ Links ]
26 .Concklin Jr., A.; Goldcamp, M. J.; Barrett, J.; J. Chem. Educ. 2014, 91, 889. [ Links ]
27. Maldonado, M.; Barreiro, P.; Gutierrez, R.; Vergara, G.; Fuel Process. Technol. 2018, 171, 287. [ Links ]
28 .Correia, R. M.; Domingos, E.; Cao, V. M.; Araujo, B. R. F.; Sena, S.; Pinheiro, L. U.; Fontes, A. M.; Aquino, L. F. M.; Ferreira, E. C.; Filgueira, P. R.; Romao, W.; Talanta 2018, 176, 26. [ Links ]
29 .Teixeira, L. S. G.; Oliveira, F. S.; Santos, H. C.; Cordeiro, P. W. L.; Almeida, S. Q.; Fuel 2008, 87, 346. [ Links ]
30 .Ardila, J. A.; Soares, F. L. F.; Farias, M. A. S.; Carneiro, R. L.; Anal. Lett. 2017, 50, 1126. [ Links ]
31. Fortunato, F. M.; Vieira, A. L.; Neto, J. A. G.; Donati, G. L.; Jones, B. T.; Microchem. J. 2017, 133, 76. [ Links ]
32 .Xu, Q.; Ye, Q.; Cai, H.; Qu, R.; Sens. Actuators, B 2010, 146, 75. [ Links ]
33 .Numata, Y.; Iida, Y.; Tanaka, H.; J. Quant. Spectrosc. Radiat. Transfer 2011, 112, 1043. [ Links ]
34 .Ye, Q.; Xu, Q.; Yu, Y.; Qu, R.; Fang, Z.; Opt. Commun. 2009, 282, 3785. [ Links ]
35 .Neto, A. C.; Oliveira, E. C. S.; Lacerda Jr., V.; Castro, E. V. R.; Romao, W.; Silva, R. C.; Pereira, R. G.; Sten, T.; Filgueiras, P. R.; Poppi, R. J.; Fuel 2014, 135, 387. [ Links ]
36 .Turanov, A.; Khitrin, A. K.; Fuel 2014, 137, 335. [ Links ]
37 .Bueno, L.; Paixão, T. R. L. C.; Talanta 2011, 87, 210. [ Links ]
38 .Wiedemann, L. S. M.; d'Avila, L. A.; Azevedo, D. A.; J. Braz. Chem. Soc. 2005, 16, 139. [ Links ]
39 .Wiedemann, L. S. M.; d'Avila, L. A.; Azevedo, D. A.; Fuel 2005, 84, 467. [ Links ]
40 .Wang, M.; Wang, J.; Choong, Y.; Food Chem. 2004, 86, 609. [ Links ]
41 .Wang, M.; Wang, J.; Choong, Y.; J. Food Compos. Anal. 2004, 17, 187. [ Links ]
42 .Nespeca, M. G.; Munhoz, J. F. V. L.; Flumignan, D. L.; de Oliveira, J. E.; Fuel 2018, 215, 204. [ Links ]
43 .Moreira, L. S.; d'Avila, L. A.; Azevedo, D. A.; Chromatographia 2003, 58, 501. [ Links ]
44 .Godoy, L. A. F.; Ferreira, E. C.; Pedroso, M. P.; Fidelis, C. H. V.; Augusto, F.; Poppi, R. J.; Anal. Lett. 2008, 41, 1603. [ Links ]
45.Dermibas, A.; Energy Convers. Manage. 2009, 50, 2239. [ Links ]
46. Pedroso, M. P.; de Godoy, L. A. F.; Ferreira, E. C.; Poppi, R. J.; Augusto, F.; J. Chromatogr. A 2008, 1201, 176. [ Links ]
47 .Avila, L. M.; dos Santos, A. P. F.; de Mattos, D. I. M.; Souza, C. G.; Andrade, D. F.; d'Avila, L. A.; Fuel 2018, 212, 236. [ Links ]
48 .Kaminski, M.; Kartanowicz, R.; Przyjazny, A.; J. Chromatogr. A 2004, 1029, 77. [ Links ]
49 .Saczk, A. A.; Okumura, L. L.; de Oliveira, M. F.; Zanoni, M. V. B.; Stradiotto, N. R.; Chromatographia 2006, 63, 45. [ Links ]
50 .Aleme, H. G.; Costa, L. M.; Barbeira, P. J. S.; Talanta 2009, 78, 1422. [ Links ]
51. Oliveira, F. S.; Teixeira, L. S. G.; Araujo, M. C. U.; Korn, M.; Fuel 2004, 83, 917. [ Links ]
52 .Chen, S.; Wu, H.; Yen, C.; Wu, S.; Lin, S.; Kou, H.; J. Chromatogr. A 1998, 799, 93. [ Links ]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dr. Atul Agrawal, Dr. Pramod Kumar, Dharmendra Kumar Dwivedi, Dr. Hemant Kumar Baghel
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.