Analysis of Nucleating Agent (NA-27) in Polypropylene Samples By ICP MS

Authors

  • Dr. Pramod Kumar Govt. Degree College Manikpur, Chitrakoot
  • Dr. Atul Agrawal Deep Chem Complex Laboratory, Bharatpur (Raj)
  • Dr. Dharmendra Singh Goswami Tulsidas Govt. PG College Karwi, Chitrakoot

Keywords:

HPLC, WXRF, NA-27 additives etc.

Abstract

Analysis of NA27 additive in Polypropylene samples having I-168 additive NA-27 is an advanced nucleating agent for polypropylene, providing superior mechanical properties, easier dispersion and reduced interaction with metal stearate. It is effective even in talc-filled polypropylene. Nucleating agents/Clarifiers NA 27 added in polypropylene grades (1110MAS /3120MA/ 4080MA/3650MN/3400MN) to give a high degree of crystallinity resulting in increased mechanical properties such as hardness, elasticity modulus etc, and improve optical properties such as transparency. In many grades where I-168 and NA-27 are added together, it is challenging to quantify the I-168 and NA-27 additives separately. As both of the additives are phosphorus-based and do not separate out in HPLC or WDXRF. To overcome this issue a new method has been developed for the analysis of NA27 contents in polypropylene samples having I-168 additives.

Author Biographies

Dr. Pramod Kumar, Govt. Degree College Manikpur, Chitrakoot

Head Dept. of Chemistry

Dr. Atul Agrawal, Deep Chem Complex Laboratory, Bharatpur (Raj)

Sr. Quality Control Manager

Dr. Dharmendra Singh, Goswami Tulsidas Govt. PG College Karwi, Chitrakoot

Head Dept. of Zoology

References

. Di Bella M, Quartieri S, Sabatino G, Santalucia F, Triscari M. The glass mosaics tesserae of Villa del Casale, Piazza Armerina, Italy: A multi-technique archaeometric study. Archaeolog Anthropolog Sci 2014, 6, 4, 345–62. Search in Google Scholar

Scholze H. Glas – Natur, Struktur und Eigenschaften, Springer Verlag, Berlin Heidelberg, 1977. Search in Google Scholar

Varshneya AK. Fundamentals of Inorganic Glass. New York, Academic Press, Inc, Harcourt Brace & Co., 1994. Search in Google Scholar

Lange J. Rohstoffe der Glasindustrie, Weinheim, Wiley-VCH, 1993. Search in Google Scholar

Vogel W. Glaschemie. Springer Verlag, 1992. Search in Google Scholar

Bange K, Durán A, Parker JM. Making Glass Better – ICG Roadmaps of Glass R&D with a 25 Year Horizon, 2nd edn. Madrid, International Commission of Glass, 2014. Search in Google Scholar

Robertshaw, P, Wood, M, Haour, A, Karklins, K, Neff, H. Chemical analysis, chronology, and context of a European glass bead assemblage from Garumele, Niger. J Archaeolog Sci 2014, 41, 591–604. Search in Google Scholar

Siqin B, Li Q, Gan F. Analysis of ancient Chinese potash glass by laser ablation inductively coupled plasma-atomic emission spectrometry/mass spectrometry. Fenxi Huaxue 2013, 41, 9, 1328–33. Search in Google Scholar

Smit Z, Milavec T, Fajfar H, Rehren Th, Lankton JW, Gratuze B. Analysis of glass from the post-Roman settlement Tonovcov grad, Slovenia, by PIXE-PIGE and LA-ICP-MS. Nucl Instrum Meth Phys Res, Sect B: Beam Interact Mater At 2013, 311, 53–59. Search in Google Scholar

Wedepohl KH, Simon K, Kronz A. Data on 61 chemical elements for the characterization of three major glass compositions in Late Antiquity and the Middle Ages. Archaeometry 2011, 53, 1, 81–102. Search in Google Scholar

De Francesco AM, Scarpelli R, Barca D, Ciarallo A, Buffone L. Preliminary chemical characterization of Roman glass from Pompeii. Periodico di Mineralogia 2010, 79, 3, 11–19. Search in Google Scholar

Robertshaw P, Benco N, Wood M, Dussubieux L, Melchiorre E, Ettahiri A. Chemical analysis of glass beads from medieval Al-Basra (Morocco). Archaeometry 2010, 52, 3, 355–79. Search in Google Scholar

Smit Z, Janssens K, Bulska E, Wagner B, Kos M, Lazar I. Trace element fingerprinting of Facon-de-Venise glass. Nucl Instrum Meth Phys Res, Sect B: Beam Interact Mater At 2005, 239, 1–2, 94–99. Search in Google Scholar

De Raedt I, Janssens K, Veeckman J, Vincze L, Vekemans B, Jeffries TE. Trace analysis for distinguishing between Venetin and facon-de-Venise glass vessels of the 16th and 17th century. J Anal Atom Spectrom 2001, 16, 9, 1012–17. Search in Google Scholar

Scarpelli R, DeFrancesco AM, Gaeta M, Cottica D, Toniolo L. The provenance of the Pompeii cooking wares: Insights from LA-ICP-MS trace element analyses. Microchem J 2015, 119, 93–101. Search in Google Scholar

Wang X, Motto-Ros V, Panczer G, et al. Mapping of rare earth elements in nuclear waste glass-ceramic using micro laser-induced breakdown spectroscopy. Spectrochim Acta, Part B: At Spectrosc 2013, 87, 139–46. Search in Google Scholar

Tabersky D, Luechinger NA, Rossier M, et al. Development and characterization of custom-engineered and compacted nanoparticles as calibration materials for quantification using LA-ICP-MS. J Anal At Spectrom 2014, 29, 6, 955–62. Search in Google Scholar

Tu XL, Zhang H, Deng WF, et al. Application of Resolution in-situ laser ablation ICP-MS in trace element analyses. Diqiu Huaxue 2011, 40, 1, 83–98. Search in Google Scholar

Strnad L, Mihaljevic M, Sebek O. Laser ablation and solution ICP-MS determination of rare earth elements in USGS BIR-1G, BHVO-2G and BCR-2G glass reference materials. Geostand Geoanal Res 2005, 29, 3, 303–14. Search in Google Scholar

Hu Z, Gao S, Liu Y, Chen H, Hu S. Accurate determination of rare earth elements in USGS, NIST SRM, and MPI-DING glasses by excimer LA-ICP-MS at high spatial resolution. Spectrosc Lett 2008, 41, 5, 228–36. Search in Google Scholar

Jochum KP, Stoll B, Herwig K, et al. MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem, Geophys, Geosyst 2006, 7, 2. Search in Google Scholar

Eggins SM, Shelley JM. Compositional heterogeneity in NIST SRM 610-617 glasses. Geostand Newsl 2002, 26, 3, 269–86. Search in Google Scholar

Horn I, Hinton RW, Jackson SE, Longerich HP. Ultra-trace element analysis of NIST SRM 616 and 614 using laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS): a comparison with secondary ion mass spectrometry (SIMS). Geostand Newsl 1997, 21, 2, 191–203. Search in Google Scholar

Norman MD, Pearson NJ, Sharma A, Griffin WL. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses. Geostand Newsl 1996, 20, 2, 247–61. Search in Google Scholar

Payne JL, Pearson NJ, Grant KJ, Halverson GP. Reassessment of relative oxide formation rates and molecular interferences on in situ lutetium-hafnium analysis with laser ablation MC-ICP-MS0. J Anal At Spectrom 2013, 28, 7, 1068–79. Search in Google Scholar

Stix J, Gauthier G, Ludden JN. A critical look at quantitative laser-ablation ICP-MS analysis of natural and synthetic glasses. Can Mineral 1995, 33, 2, 435–44. Search in Google Scholar

Zhang J, Xie F, Liang Y. The impact of the mechanical properties with rare earth elements on the black shale glass-ceramic. International Conference on Materials for Renewable Energy and Environment, Chengdu, China 2013, 2, 569–72. Search in Google Scholar

Mirti P, Pace M, Ponzi MM, Aceto M. ICP-MS analysis of glass fragments of Parthian and Sasanian epoch from Seleucia and Veh Ardasir (central Iraq). Archaeometry 2008, 50, 3, 429–50. Search in Google Scholar

Smit Z, Janssens K, Bulska E, Wagner B, Kos M, Lazar I. Trace element fingerprinting of Facon-de-Venise glass. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At 2005, 239, 1–2, 94–99. Search in Google Scholar

Mizusuna Hirobumi, Nakayama Mokichi. Determination of rare earth elements in glass by ICP-AES (inductively coupled plasma-Atomic emission spectroscopy). Jpn Kokai Tokkyo Koho 1993, JP05079983A19930330. Search in Google Scholar

Abe Y, Kikugawa T, Nakai I. Development of nondestructive heavy elemental analytical method of ancient glass artefacts using high-energy (116 keV) synchrotron radiation X-ray fluorescence spectrometry. X-sen Bunseki no Shinpo 2014, 45, 251–68. Search in Google Scholar

Chen JR, Chao EC, Back JM, et al. Rare earth element concentrations in geological and synthetic samples using synchrotron x-ray fluorescence analysis. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At 1993,B75,1–4, 576–81. Search in Google Scholar

Nakai I, Terada Y, Itou M, Sakurai Y. Use of highly energetic (116 keV) synchrotron radiation for X-ray fluorescence analysis of trace rare-earth and heavy elements. J Synchrotron Radiat 2001, 8, 4, 1078–81. Search in Google Scholar

Nakanishi T, Nishiwaki Y, Miyamoto N, Shimoda O, Watanabe S, Muratsu S, Takatsu M, Terada Y, Suzuki Y, Kasamatsu M, Suzuki S. Lower limits of detection of synchrotron radiation high-energy X-ray fluorescence spectrometry and its possibility for the forensic application for discrimination of glass fragments. Forensic Sci Int 2008, 175, 2–3, 227–34. Search in Google Scholar

Nishiwaki Y, Nakanishi T, Terada Y, Ninomiya T, Nakai I. Nondestructive discrimination of small glass fragments for forensic examination using high energy synchrotron radiation X-ray fluorescence spectrometry. X-Ray Spectrom 2006, 35, 3, 195–99. Search in Google Scholar

Baklouti S, Maritan L, Laridhi Ouazaa N, Mazzoli C, Larabi Kassaa S, Joron JL Fouzai B, Casas Duocastella L, Labayed-Lahdari M. African terra sigillata from Henchir Es-Srira archaeological site, central Tunisia: Archaeological provenance and raw materials based on chemical analysis. Appl Clay Sci 2015, 105–106, 27–40. Search in Google Scholar

Facetti-Masulli JF, Kump P, Gonzalez VR, Diaz Z. Geochemical studies of Guarani ethnic groups pottery with XRF. J Radioanal Nucl Chem 2010, 286, 2, 489–94. Search in Google Scholar

Beckhoff B, Kolbe M, Hahn O, Karydas AG, Zarkadas C, Sokaras D, Mantler M. Reference-free x-ray fluorescence analysis of an ancient Chinese ceramic. X-Ray Spectrom 2008, 37, 4, 462–65. Search in Google Scholar

Bach H, Krause D. Analysis of the Composition and Structure of Glass and Glass Ceramics. Berlin, Heidelberg, Springer Verlag, 2013, 83. Search in Google Scholar

Deutsche Norm DIN 52340–2. Prüfung von Glas; Chemische Analyse von ungefärbten Kalk-Natron-Gläsern, Teil 2: Bestimmung von SiO2, 1974. Search in Google Scholar

International Standard ISO 21078–1. Determination of boron (III) oxide in refractory products – Part 1: Determination of total boron (III) oxide in oxidic materials for ceramics, glass and glazes, 2008. Search in Google Scholar

American Standard ASTM C169–92. Standard test methods for chemical analysis of soda-lime and borosilicate glass, 2011. Search in Google Scholar

Deutsche Norm DIN 51084. Prüfung von oxidischen Roh- und Werkstoffen für Keramik, Glas und Glasuren – Bestimmung des Gehaltes an Fluorid (Testing of oxidic raw and basic materials for ceramic, glass and glazes – Determination of fluoride content) – in German, 2008. Search in Google Scholar

Deutsche Norm DIN 52340–3. Prüfung von Glas; Chemische Analyse von ungefärbten Kalk-Natron-Gläsern, Teil 3: Aufschlußverfahren, 1990. Search in Google Scholar

Deutsche Norm DIN 51086–2. Prüfung von oxidischen Roh- und Werkstoffen für Keramik, Glas und Glasuren – Teil 2: Bestimmung von Ag, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Er, Eu, Fe, La, Mg, Mn, Mo, Nd, Ni, P, Pb, Pr, S, Sb, Se, Sn, Sr, Ti, V, W, Y, Yb, Zn, Zr durch optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP OES) (Testing of oxidic raw materials and materials for ceramics, glass and glazes – Part 2: Determination of Ag, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Er, Eu, Fe, La, Mg, Mn, Mo, Nd, Ni, P, Pb, Pr, S, Sb, Se, Sn, Sr, Ti, V, W, Y, Yb, Zn, Zr by optical emission spectrometry with inductively coupled plasma (ICP OES)) – in German, 2004. Search in Google Scholar

Borom MP, Hanneman RE. Local compositional changes in alkali silicate glasses during electron microprobe analysis. J Appl Phys 1967, 38, 2406. Search in Google Scholar

Spray JG, Rae DA. Quantitative electron microprobe analysis of alkali silicate glasses: A review and userguide. Can Mineral 1995, 33, 323–32. Search in Google Scholar

Varshneya AK, Cooper AR, Cable M. Changes in composition during electron micro-probe analysis of K2O–SrO–SiO2 Glass. J Appl Phys 1966, 37, 2199. Search in Google Scholar

Nielsen CH, Sigurdsson H. Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. Am Mineral 1981, 66, 547–52. Search in Google Scholar

Vassamillet LF, Caldwell VE. Electron probe microanalysis of alkali metals in glasses. J Appl Phys 1969, 40, 1637. Search in Google Scholar

Williams DB, Carter CB. Transmission Electron Microscopy: Basics I. New York, Springer Science & Business Media Inc., 1996. Search in Google Scholar

. Agrawal A & Kumar P , Effect of Storage Time Over FM and Izod Property of PP Resins,International Journal of Multidisciplinary Research Education Analysis and Development (IJMREAD) Delhi, 2021,2,06-19.

Downloads

Published

2021-11-25

How to Cite

Kumar, D. P. ., Agrawal, D. A., & Singh, D. D. (2021). Analysis of Nucleating Agent (NA-27) in Polypropylene Samples By ICP MS. International Journal of Multidisciplinary Research Education Analysis and Development- IJMREAD, 71–80. Retrieved from https://ijmread.com/index.php/ijmread/article/view/47

Issue

Section

Articles